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We consider the problem of nonlinear steady convection in a horizontal mushy layer
rotating about a vertical axis. We analyse the stationary modes of convection in
the form of two-dimensional oblique rolls and three-dimensional distorted patterns.
Under a near-eutectic approximation and the limit of large far-field temperature, we
determine the two- and three-dimensional solutions to the weakly nonlinear problem
by using a perturbation technique, and the stability of these solutions is investigated
with respect to arbitrary three-dimensional disturbances. The results of the analyses
in a particular range of values of the amplitude of convection indicate in particular
that, over most of the range of values of the parameters, subcritical convection in
the form of down-hexagons with down-flow at the cell centres and up-flow at the
cell boundaries can be preferred over up-hexagonal convection, where the convective
flow is upward at the cell centres and downward at the cell boundaries. For zero or
very small values of T (T � 1), which is the square root of a Taylor number, rolls
are preferred over supercritical rectangles, while supercritical rectangles, which are
characterized by an angle γ of about 60◦, are stable and preferred over the rolls for
T above some value. Here, γ or 180◦ − γ are the angles between any two adjacent
wavenumber vectors of a rectangular cell. For increasing values of T , these rectangles
become subcritically unstable and are replaced by new supercritical rectangles of
higher γ values, and γ increases with T until supercritical squares (γ =90◦) become
stable. The significance and realizability of down-hexagons, rectangles and squares
are found to be due to the interactions between the local solid fraction and the flow
associated with the Coriolis term in the momentum–Darcy equation that are fully
taken into account in the present study.

1. Introduction
Recently Guba (2001) considered the problem of finite-amplitude steady convection

in a horizontal mushy layer rotating about a vertical axis. The investigation was based
on the mushy-layer model developed by Amberg & Homsy (1993) and Anderson &
Worster (1995) where a near-eutectic approximation was employed in the limit of
large far-field temperature. The model allows examination of the dynamics of the
mushy layer in the form of a small deviation from the classical system of convection in
a horizontal porous layer of constant permeability. Guba (2001) excluded interactions
between the local solid fraction and the convection associated with the Coriolis term
in the Darcy–momentum equation by fixing the local solid fraction at a constant value
in the term modelling the effect of rotation. The goal of Guba was, then, to determine
how rotation of the system affects the convection in this relatively simple case in
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the absence of those interaction effects. In addition, as in the work of Amberg &
Homsy (1993), Guba assumed that the amplitude ε of convection is of the same order
as the dimensionless thickness δ of the mushy layer. The form of finite-amplitude
convection studied by Guba (2001) was that due to either two-dimensional oblique
rolls or distorted hexagons. As Guba explained, and more details can be found in
Veronis (1959), due to the rotation of the system, the two-dimensional rolls are oblique
in the sense that the streamlines of the flow are confined to planes which are at oblique
angles to the axes of convection rolls. Similarly, the hexagonal patterns are distorted
in the presence of rotation. Guba (2001) found, in particular, that depending on the
range of the parameter values, either subcritical or supercritical oblique rolls can exist
and the distorted subcritical hexagons can change their form from up-hexagons to
down-hexagons for a rotation rate beyond some critical value.

In the present investigation, we extend the problem treated by Guba (2001) by
following Anderson & Worster (1995) in assuming a much wider range ε � δ for the
amplitude of convection, taking into account the presence of interactions between
the local solid fraction and the convection associated with the Coriolis term in
the momentum–Darcy equation and carrying out a stability analysis of the finite-
amplitude steady solutions. We found a number of interesting results, some of which
sharply differ from those obtained based on a model of the type studied by Guba
(2001). The differences between some of the results in the present study and those due
to Guba (2001) are discussed in some detail in § 5. To fully appreciate the results of
the present study, which is based on a more realistic model, we also carried out some
calculations based on a model of the type studied by Guba (2001), and we found,
for example, that convection in the form of either rectangles or squares is not stable
and, thus, not preferred over the rolls, while in the present model convection in the
form of supercritical rectangles or supercritical squares can be stable and preferred
over the rolls in a particular range of values of the rotation rate. However, subcritical
rectangles or subcritical squares, which can exist in a particular range of values of
the rotation rate, are found to be unstable.

Very recently Govender & Vadasz (2002) analysed the problem of two-dimensional
weakly nonlinear steady convection in a horizontal mushy layer rotating about
a vertical axis. The authors employed a near-eutectic approximation in the limit
of large far-field temperature. The momentum–Darcy equation was extended only
to include the time derivative and the Coriolis terms. The authors excluded the
interactions between the local solid fraction and the flow associated with the Coriolis
term by fixing the local solid fraction as a constant value in the term modelling the
effect of rotation. Their two-dimensional weakly nonlinear analysis was based on
the order δ0 of the original governing system. The main result of the study was that
two-dimensional flow is supercritical.

In regard to the motivation of the present study and the applicability of the
results, understanding rotational effects on buoyancy-driven convection in a mushy
layer, which is formed adjacent to the crystal interface in an alloy system, are of
interest in both engineering and geophysical applications. Understanding the role
and effects of the Coriolis force on the dynamics of a possible mushy layer adjacent
to the Earth’s inner core interface can be important for further understanding the
geodynamo. In industrial crystal growth processes it is desirable to impose certain
external constraints, such as rotation, in an optimized manner upon the crystallization
system, in order to reduce the effects of the induced convection flow, which can lead
to micro-defect density in the crystal and, thus, reduce the quality of the crystal
produced. Some theoretical results on the effects of rotation about a vertical axis
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on the flow of melt during alloy solidification and in the absence of a mushy
layer (Riahi 1993) indicated conditions under which rotation may stabilize the flow.
Computational studies on the effects of rotation about a vertical axis of a horizontal
layer on the flow of melt during alloy solidification (Neilson & Incropera 1993)
indicated stabilization of vertical plumes and a lack of meandering. The occurrence
of undesirable imperfections, which are called freckles, in an alloy crystal, are believed
to be due to convection in vertical chimneys, which are developed following the onset
of plume convection within the mushy layer. In the present study we are interested in
determining the effects of rotation on the onset of plume convection, the tendency for
chimney formation and finite-amplitude steady convection states, which occur near
the onset of motion.

The following two sections, §§ 2 and 3 deal with the mathematical formulation of
the problem and the finite-amplitude analysis. The results of the steady solutions are
presented and discussed in § 4, which is followed by the conclusion in § 5.

2. Formulation
We consider a binary alloy melt that is cooled from below and is solidified

at a constant speed V0. Following Amberg & Homsy (1993) and Anderson &
Worster (1995), we consider a mushy layer of thickness d adjacent to and above
the solidification front to be physically isolated from the overlying liquid and the
underlying solid zones. The overlying liquid is assumed to have a composition C0 > Ce

and temperature T∞ >TL(C0) far above the mushy layer, where Ce is the eutectic
composition, TL(C̃) is the liquidus temperature of the alloy and C̃ is the composition.
It is then assumed that the horizontal mushy layer is bounded from above and below
by rigid and isothermal boundaries. The solidifying system is assumed to be rotating
at a constant speed ω about a vertical axis anti-parallel to the gravity vector. We
consider the solidifying system in a moving frame of reference ox̃ỹz̃, whose origin lies
on the solidification front, translating at speed V0 with the solidification front in the
positive z̃-direction and rotating with the speed ω around the z̃-axis.

It should be noted that the mushy layer is assumed to be in local thermodynamic
equilibrium and, thus,

T̃ = TL(C0) + Γ (C̃ − C0),

where T̃ is the temperature and Γ is the slope of the liquidus (Anderson & Worster
1995), which is assumed to be constant. The mushy layer can be appropriately treated
as a porous layer (Fowler 1985; Worster 1992), where the solid dendrites and the
liquid coexist, and Darcy’s law is adopted.

Next, we consider the equations for momentum, continuity, heat and solute for
the flow of melt in the mushy layer in the moving frame. These equations are non-
dimensionalized by using V0, k/V0, k/V 2

0 , β�Cρgk/V0, �C and �T as scales for
velocity, length, time, pressure, solute and temperature, respectively. Here k is the
thermal diffusivity, ρ is a reference (constant) density, β =β∗ − Γ α∗, where α∗ and
β∗ are the expansion coefficients for the heat and solute, respectively, �C = C0 − Ce,
�T = TL(C0) − Te and Te is the eutectic temperature. The non-dimensional form of
the equations for momentum, continuity, temperature and solute concentration in the
mushy layer are

K(φ̃)ũ = −∇P̃ − R̃θ̃ z + T ũ × z̃

1 − φ̃
, (1a)

∇ · ũ = 0, (1b)
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∂

∂t̃
− ∂

∂z̃

)
(θ̃ − S̃t φ̃) + ũ · ∇θ̃ = ∇2θ̃ , (1c)

(
∂

∂t̃
− ∂

∂z̃

)
[(1 − φ̃)θ + Crφ̃] + ũ · ∇θ̃ = 0, (1d)

where ũ = ũx + ṽ y + w̃z is the volume flux vector per unit area, which is also known
as the Darcy velocity vector (Nield 1998), ũ and ṽ are the horizontal components
of ũ along the x̃- and ỹ-directions, respectively, x and y are unit vectors along the
positive x̃- and ỹ-directions, w̃ is the vertical component of ũ along the z̃-direction,
z is a unit vector along the positive z̃-direction, P̃ is the modified pressure, θ̃ is
the non-dimensional composition, or equivalently temperature (Worster 1992), θ̃ =
[T̃ − TL(C0)]/�T = (C̃ − C0)/�C, t̃ is the time variable, φ̃ the local solid fraction,
R̃ = β�CgΠ (0)/(V0ν) is the Rayleigh number, Π (0) is the reference value at φ̃ = 0
of the permeability Π (φ̃) of the porous medium, which is assumed to be finite
(Worster 1992), ν is the kinematic viscosity, g is acceleration due to gravity, K(φ̃) ≡
Π (0)/Π(φ̃), St = L/(CL�T ) is the Stefan number, CL is the specific heat per unit
volume, L is the latent heat of solidification per unit volume, Cr =(Cs − C0)/
�C is a concentration ratio, Cs is the composition of the solid phase forming
the dendrites and T = 2ωΠ(0)/ν is the Coriolis parameter, which is the square root
of a Taylor number. Equation (1d) is based on the limit of sufficiently large value of
the Lewis number k/ks (Worster 1992; Anderson & Worster 1995), where ks is the
solute diffusivity.

The governing equations (1a–d) are subject to the following boundary conditions
(Amberg & Homsy 1993):

θ̃ +1 = w̃ = 0 at z̃ =0, (2a)

θ̃ = w̃ = φ̃ = 0 at z̃ = δ, (2b)

where δ = dV0/k is a growth Péclet number representing the dimensionless depth of
the layer.

Following Amberg & Homsy (1993) and Anderson & Worster (1995) in reducing
the model asymptotically, we assume the following rescaling in the limit of sufficiently
small δ:

Cr = C/δ, ε � δ � 1, (3a)

(x̃, ỹ, z̃) = (x, y, z)δ, t̃ = δ2t, R2 = δR̃, (3b)

θ̃ = θB(z) + εθ(x, y, z, t), (3c)

φ̃ = φB(z) + εφ(x, y, z, t), (3d)

ũ = 0 + (εR/δ)u(x, y, z, t), (3e)

P̃ =RPB(z) + RεP (x, y, z, t), (3f )

where C is an order-one quantity as δ → 0, and the quantities with subscript B are
the basic flow variables for the motionless state and are assumed to be a function
of z only. The small deviation of each dependent variable from its basic quantity is
measured by a perturbation amplitude ε and can vary with respect to spatial and
time variables as shown in (3c–f ).

As discussed in Anderson & Worster (1995), the assumption of thin mushy
layer (δ � 1) is associated with large non-dimensional far-field temperature θ∞ =
[T∞ − TL(C0)]/�T 	 1, which can occur when the initial C̃ is close to Ce.
The assumption of order-one C corresponds to the near-eutectic approximation
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(Fowler 1985), which allows one to describe the mushy layer as a porous layer of
constant permeability to the leading order.

The rescaling (3a–f ) is then used in (1a–d) and (2a–b). This system of equations and
boundary conditions admits a motionless basic state, which is steady and horizontally
uniform. The basic-state solution is, in terms of the asymptotic expansions for δ� 1;

θB = (z − 1) + δ(z − z2)/2 + . . . , (4a)

φB =
δ(1 − z)

C
+ δ2

[
−(1 − z)2

C2
+

z2 − z

2C

]
+ . . . , (4b)

PB = P0 + R[(z − z2/2) + δ(z2/2 − z3/3)/2 + . . . ], (4c)

where P0 is a constant. Since φ̃ is expected to be small, according to (4b), the following
expansion for K(φ̃) will be implemented later in the governing system:

K(φ̃) = 1 +K1φ̃ + K2φ̃
2 + . . . , (5)

where K1 and K2 are constants (Amberg & Homsy 1993).
For the analysis to be presented in the next section, it is convenient to use the

general representation

u = ΩV + Eψ, (6a)

Ω ≡ ∇ × ∇ × z, E ≡ ∇ × z, (6b)

for the divergent-free vector field u (Chandrasekhar 1961). Here V and ψ are the
poloidal and toroidal functions for u, respectively. Taking the vertical components
of the curl and double curl of (1a) and using (1b) in (1)–(2), we find the following
system, which will be analysed in the next section:

∇2[K(φB + εφ)�2V ] +
∂

∂z
[ΩV · ∇K(φB + εφ)] +

∂

∂z
{[∇K(φB + εφ) × ∇ψ] · z}

− R�2θ + T ∂

∂z

{[
1

1 − φB − εφ

]
�2ψ +

[
∇ ∂

∂z
V × ∇

(
1

1 − φB − εφ

)]
· z

+ ∇2ψ · ∇2

(
1

1 − φB − εφ

) }
= 0, (7a)

K(φB + εφ)�2ψ +

[
∇ ∂

∂z
V × ∇K(φB + εφ)

]
· z + ∇2ψ · ∇2K(φB + εφ)

− T
{[

1

1 − φB − εφ

]
�2

∂

∂z
V −

[
∇ψ × ∇

(
1

1 − φB − εφ

)]
· z

+ ∇2

∂

∂z
V · ∇2

[
1

1 − φ B − εφ

]}
=0, (7b)

(
∂

∂t
− δ∂

∂z

)
(−θ + Stφ) + R

(
dθB

dz

)
�2V + ∇2θ = εR(ΩV + Eψ) · ∇θ, (7c)

(
∂

∂t
− ∂

∂z

)
[(−1 + φB)θ + θBφ + εφθ − Cφ/δ]

+ R

(
dθB

dz

)
�2V = εR(ΩV + Eψ) · ∇θ, (7d)

θ = V = 0 at z =0, (7e)
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θ = V =φ = 0 at z = 1, (7f )

where

�2 ≡ ∂2

∂x2
+

∂2

∂y2
, ∇2 ≡

(
∂

∂x
,

∂

∂y

)
.

3. Analysis
In this section we seek steady-state solutions of the nonlinear system (7a–f ) by

applying a weakly nonlinear analysis, based on a double series expansion in powers
of two small parameters for the perturbation quantities, of the type carried out by
Busse (1967) and Busse & Riahi (1980). Here the small parameters are δ and ε,
which satisfy the condition given in (3a). Following Anderson & Worster (1995), we
first make a formal asymptotic expansion in ε and then at each order in ε make a
formal asymptotic expansion in δ. The appropriate expansions are for the dependent
variables of the perturbation system and for R. These expansions are

(V, ψ, θ, φ, R) = [(V00 + δV01 + . . . ), (ψ00 + δψ01 + . . . ), (θ00 + δθ01 + . . . ),

(φ00 + δφ01 + . . . ), (R00 + δR01 + . . . )] + ε[(V10 + δV11 + . . . ),

(ψ10 + δψ11 + . . . ), (θ10 + δθ11 + . . . ), (φ10 + δφ11 + . . . ),

(R10 + δR11 + . . . )] + ε2[(V20 + δV21 + . . . ), (ψ20 + δψ21 + . . . ),

(θ20 + δθ21 + . . . ), (φ20 + δφ21 + . . . ), (R20 + δR21 + . . . )] + . . . . (8)

3.1. Linear problem

Upon inserting (8) into (7a–f ) and disregarding the nonlinear terms, we find the
linear problem. At order ε0δ0 the system (7a–f ) yields the following results:

V00 = [(π2 + a2)/(R00a
2)] sin(πz)

N∑
n=−N

AnWn, (9a)

ψ00 = T π[(π2 + a2)/(R00a
2)] cos(πz)

N∑
n=−N

AnWn, (9b)

θ00 = −sin(πz)

N∑
n=−N

AnWn, (9c)

φ00 = [−(π2 + a2)/(Cπ)][1 + cos(πz)]

N∑
n=−N

AnWn, (9d)

R2
00 = (π2 + a2)(π2 + a2 + π2T2)/a2, (9e)

where

Wn = exp(ian · r). (9f )

Here i is the pure imaginary number (i =
√

−1), subscript n takes only non-zero
integer values from −N to N , N is a positive integer representing the number of
distinct modes, r is the position vector, and the horizontal wavenumber vectors an

satisfy the properties

an · z = 0, |an| = a, a−n = −an. (10)
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The coefficients An are constants and satisfy the conditions

N∑
n=−N

An A∗
n = 1, A∗

n =A−n, (11)

where the asterisk indicates the complex conjugate. Minimizing the expression for R00

given in (9e), with respect to the wavenumber a, we find

R00c = π[1 + (1 + T2)0.5], (12a)

ac = π(1 + T2)0.25. (12b)

Here R00c is the minimum value of R00 achieved at a = ac. In all the analyses and
solutions to follow hereafter, we shall set R00 = R00c and a = ac, unless indicated
otherwise. It should be noted that equations (9a–e) and (12b) are exactly the same
as those of Guba (2001); the differences between the present work and Guba (2001)
begin to appear in the higher correction terms due to the double limit expansion
and the interactions between the local solid fraction and the Coriolis force. As the
results to be discussed in the next section indicate, some of the presumed order-
one coefficients Rnm can become too large for T somewhat bigger that 1, and so
the validity of the present model may become questionable for large values of T.
Hence, we shall assume by following Guba (2001) that the value of T can be at most
approximately 1. Also, due to the complexity of the present rotating flow investigation,
which is amplified by taking into account the local solid fraction interaction with
the Coriolis term, we consider a simplifying assumption by following Anderson &
Worster (1995) and focusing on a particular limiting case where K1 is small, of order
δ, so that we can write K1 = δKc, where Kc is a constant of order one.

Considering the governing system (7a–f ) at order ε0δ1, eliminating ψ01 between
(7a) and (7b), multiplying the resulting equation by −V00, and (7c) by θ00, and adding
these last two equations, making use of (7e–f ) and averaging over the mushy layer,
we find the condition for the existence of the solutions V01 and θ01. This condition
yields

R01 =

[
π2T 2(π2 + a2)

2Ca2R00

]
− R00St

2C
(13a)

and at the critical onset condition

R01c =
1

2C

{
πT 2

(1 + T2)0.5
− π[1 + (1 + T2)0.5]St

}
. (13b)

It should be noted that the first term in curly brackets of equation (13b) represents a
new result, which modifies the previously obtained result for the O(δ) correction to
the linear Rayleigh number in Guba (2001).

Hence, the critical Rayleigh number Rc for the linear system can be written as

Rc = R00c + δR01c + O(δ2). (14)

The solutions at this order can be written in the form

(V01, ψ01, θ01, φ01) = [V ∗
01(z), ψ

∗
01(z), θ

∗
01(z), φ

∗
01(z)]

N∑
n=−N

AnWn, (15)

where the expressions for the coefficients V ∗
01, ψ∗

01, θ∗
01 and φ∗

01, which are functions of
z and the non-dimensional parameters of the problem, are not given in here. Instead,
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they are available on request from the author or the Journal of Fluid Mechanics
editorial office.

3.2. Nonlinear problem

Next, we analyse the nonlinear problem for the steady convection. The solvability
conditions for the nonlinear systems require the following special solutions V00n and
θ00n of the linear system:

(V00n, θ00n) =

[
π2 + a2

R00a2
, −1

]
sin(πz)AnWn. (16)

It turns out that there is no need to consider special linear solution for ψ and φ

since the governing nonlinear systems are usually reduced to a form where only (16)
will be needed to form the corresponding solvability conditions. Consider the system
(7a–f ) at order ε. Multiplying the equation resulted from eliminating ψ10 between
(7a) and (7b) by −V00n, (7c) by θ00n, adding, applying the boundary conditions (7e–f )
and averaging over the mushy layer, we find

R10|An|2 = −πT2

[
(π2 + a2)2

CR00a2

]∑
l,p

(1 + Φlp)AnAlAp〈WnWlWp〉, (17a)

where

Φlp =al · ap/a2, (17b)

and an angular bracket indicates the average over the layer. The right-hand side of
(17a) for R10 indicates that R10 = 0, unless

an + al + ap = 0 (18)

for at least some l and p. The condition (18) can be satisfied in the cases where
convection is in the form of either hexagonal or triangular patterns (Busse 1989),
while (18) cannot be satisfied for convection in the form of two-dimensional rolls,
squares or rectangles. It should also be noted that the existence of triangle-type
solution (N = 3) is ruled out in the present problem since a pure imaginary value for
An, which holds in this case (Gorkov 1957), does not satisfy (17a). The solutions at
this order can be written in the form

(V10, ψ10, θ10, φ10) = [V ∗
10(z), ψ

∗
10(z), θ

∗
10(z), φ

∗
10(z)]

N∑
n=−N

AnWn

+
∑
l,p

[V ∧
10(z, Φlp), ψ∧

10(z, Φlp), θ∧
10(z, Φlp), φ∧

10(z, Φlp)]
∑
l,p

AlApWlWp. (19)

The expressions for V ∗
10, ψ∗

10, θ∗
10, φ∗

10, V ∧
10, ψ∧

10, θ∧
10 and φ∧

10 are not given here.†
We also carry out here the analysis for the system (7a–f ) at the order εδ, mainly

because the magnitude of R10 due to (17a) for the hexagonal patterns is found to be
rather small in the range of T that is considered in the present study. Consider the
system (7a–f ) at the order εδ. Multiplying the equation resulting from eliminating
ψ11 between (7a) and (7b) by −V00n, (7c) by θ00n, adding, applying the boundary

† Details of these and similar expressions given in this section are available on request from the
author or the Journal of Fluid Mechanics Editorial Office, Cambridge.
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conditions (7e–f ) and averaging over the mushy layer, we find

R11|An|2 =
∑
l,p

F11(Φlp)AnAlAp〈WnWlWp〉 +G11|An|2, (20)

where the expressions for the coefficients F11 and G11, which are lengthy, are available
on request. As in the case of R10, R11 = 0 unless (18) holds for at least some l and
p since the expression for G11 is zero for R10 = 0 and the summation term in the
right-hand side of (20) vanishes if (18) does not hold. The solutions in this order are
quite lengthy and will not be given in this paper.

We now consider the system (7a–f ) at order ε2. Multiplying the equation resulting
from eliminating ψ20 between (7a) and (7b) by −V00n, (7c) by θ00n, adding, applying
the boundary conditions (7e–f ) and averaging over the mushy layer, we find

R20|An|2 =
∑
l,m,p

F20(Φlp, Φml, Φmp)AnAlAmAp〈WnWlWmWp〉 +
∑
l,p

H20(Φlp)AnAlAp

× 〈WnWlWp〉 + G20|An|2 (n= −N, . . . , −1, 1, . . . , N), (21)

where the summations in (21) for l, m and p run from −N to N , and the lengthy
expressions for F20, H20 and G20 are available on request.

The system (21) contains integral expressions of the form 〈WnWlWp〉, which differ
from zero only if (18) is satisfied, and integral expressions of the form 〈WnWlWmWp〉,
which differ from zero only if

an + al + am + ap = 0. (22)

The system (21), together with (11), (17a) and (20), can be used to study the steady
solutions in the form of two-dimensional oblique rolls and three-dimensional distorted
cells. We shall restrict our attention to the simplest types of solutions, which include
those observed in the applications. These solutions are called regular or semi-regular
solutions (Busse 1967). In the case of a regular solution all angles between two
neighbouring a-vectors are equal and (11) yields

|A1|2 = . . .= |AN |2 =
1

2N
. (23)

In the more general semi-regular solution, where (23) still holds, the scalar products
between any a-vector and its two neighbouring a-vectors take the constant values
α1 and α2. An example of a semi-regular solution is that due to rectangular cells
(N =2), where α1 = −α2. Regular solutions can follow from the semi-regular ones for
the special case α1 = α2. Simple forms of regular solutions correspond to the cases of
two-dimensional rolls (N = 1), square cells (N =2) and hexagons (N = 3).

Thus, using (11), (18) and (22)–(23) in (17a), (20) and (21), we find

R10 = [−πT 2(π2 + a2)2/(CR00a
2
√

6)]S, (24a)

R11 = [2F11(Φlp = 0.5)/
√

6 + G11]S, (24b)

R20 =

N∑
m=−N

Tnm|Am|2 + (2/
√

6)H20(Φlp = 0.5)S + G20

(n= −N, . . . , −1, 1, . . . , N), (24c)

where

S =

{
1 for hexagons

0 for non-hexagons,
(24d)
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Tnm = F−n,n,−nδnm + (Fn,−n,−n +F−n,−n,n)δn,−m

+ (F−m,m,−n + F−n,m,−m + Fm,−n,−m)(1 − δnm)(1 − δn,−m), Fl,m,p

≡ F20(Φlp, Φml, Φmp), (24e)

δnm =

{
1 for n= m

0 for n �= m.
(24f )

Here the term ‘non-hexagons’ in (24d) means a solution whose wavenumber vectors
do not contain a sub-set of such vectors, which can satisfy a condition of the type (18).

Using (24), the simplest types of solutions, which turn out to be preferred under
certain conditions in the present study, are described briefly as follows. For steady
two-dimensional oblique rolls,

N =1, An = 1/
√

2, Φnm = ±1, R10 =R11 = 0, R20 = (T11 + T1,−1)/2 + G20.

(25a)

For distorted rectangular (or square) pattern convection,

N = 2, An = 1
2
, γ � 90◦, Φnm = ±1 or ± cos γ,

(25b)
R10 = R11 = 0, R20 = 1

4
(T11 + T1,−1 + T12 + T1,−2) + G20.

Here γ is the angle, which does not exceed 90◦, between two adjacent wavenumber
vectors of any rectangular (or square) cell. For distorted up-hexagonal (down-
hexagonal) convection,

N = 3, An = 1√
6
, Φ = ±1 or ±0.5, R10 + δR11 <(>) 0,

R10 = −πT 2 (π2 + a2)2

CR00a2
√

6
, R11 =

F11(Φlp =0.5)√
6

+ G11, (25c)

R20 = 1
6
(T11 + T1,−1 + T12 + T1,−2 + T13 + T1,−3) + 2√

6
H20(Φlp = 0.5) + G20.

As will be seen later in § 4, the sign of the vertical motion at the cell centres for
hexagons, which is determined by the sign of ε, can be inferred from the condition

ε(R10 + δR11) < 0 (26)

for the preferred subcritical hexagons. As already indicated, the value of R10 in the
present problem is found to be rather small for the assumed range of values for
T, and, thus, the sign of (R10 + δR11) is taken into account to determine whether
hexagons are subcritical or supercritical.

3.3. Stability problem

The analysis of the nonlinear steady convection presented in the previous subsection
has shown that an infinite manifold of solutions could exist even though this manifold
represents only an infinitesimal fraction of the manifold of the solutions (9a–d) of the
linear problem. To distinguish the physically realizable solution from among all the
possible steady solutions, the stability of V, ψ , θ , φ with respect to arbitrary three-
dimensional disturbances Vd , ψd , θd , φd needs to be investigated. The time-dependent
disturbances can be assumed to have the form

(Vd, ψd, θd, φd) = [V ′(x, y, z), ψ ′(x, y, z), θ ′(x, y, z), φ′(x, y, z)] exp(σ t), (27)
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where σ is the growth rate of the disturbances. When the governing equations and
the boundary conditions of the form (7a–f ) for the finite-amplitude steady flow are
subtracted from the corresponding equations and boundary conditions for the total
dependent variables for the steady flow and the disturbance quantities, and the re-
sulting system is linearized with respect to the disturbance quantities, we obtain the
stability system, which is available on request. When the expansion (8) is used in it,
it becomes evident that the stability system can be solved by a similar expansion:

(V ′, ψ ′, θ ′, φ′, σ ) = [(V ′
00 + δV ′

01 + . . . ), (ψ ′
00 + δψ ′

01 + . . . ), (θ ′
00 + δθ ′

01 + . . . ),

(φ′
00 + δφ′

01 + . . . ), (σ00 + δσ01 + . . . )]+ ε

[
(V ′

10 + δV ′
11 + . . . ),

(ψ ′
10 + δψ ′

11 + . . . ), (θ ′
10 + δθ ′

11 + . . . ),

(
φ1(−1)

δ
+ φ′

10 + δφ′
11 + . . .

)
,

(σ10 + δσ11 + . . . )

]
+ ε2

[(
V2(−1)

δ
+ V ′

20 + δV ′
21 + . . .

)
,

(
ψ2(−1)

δ
+ ψ ′

20 + δψ ′
21 + . . .

)
,

(
θ2(−1)

δ
+ θ ′

20 + δθ ′
21 + . . .

)
,

(
φ2(−1)

δ
+ φ′

20 + δφ′
21 + . . .

)
, (σ20 + δσ21 + . . . )

]
+ . . . , (28)

where the expansions for φ′ and all the disturbance variables are singular at order ε

and ε2, respectively, as δ → 0, but it turns out that such O(1/δ) terms are needed in
the stability analysis since it is found that the stability problems of O(ε) and O(ε2)
are forced by terms of order 1/δ in the equations for the disturbances.

For the present stability analysis we restrict ourselves to those disturbances
whose dependent variables have wavenumber vectors a′

n which all have the same
wavenumber |a′

n| = a′ = ac. Then the most critical disturbances, which have the
maximum growth rate, are found to be characterized by σ0 = 0, where

σ0 = σ00 + δσ01 + . . ..

The linear solutions for the dependent variables of the disturbances at order δ0 are
found to be of the form (9a–d), provided An, Wn and N are replaced by arbitrary
constants Ãn, W̃ n = exp(ia′

n · r) and ∞, respectively.
In analogy with the solvability conditions for the steady motion presented in the

previous subsection, the solvability conditions for the disturbance systems at order ε

(n> 1) require us to define particular solutions of the linear system for the disturbance
system. These solutions, designated by Ṽ 00n and θ̃00n, have the same form as (15),
provided An and Wn are replaced, respectively, by Ãn and W̃ n. The solvability condition
for the disturbance system at order ε is derived similarly to the corresponding one for
the steady flow system. We first derived the disturbance system at order ε from the
original stability system. Then we eliminated ψ ′

10 in the disturbance system at order ε.
Next, applying the solvability condition for the resulting disturbance system at order
ε, we found the expression for σ10. Similarly, we applied the solvability conditions at
orders εδ and ε2 to determine σ11 and σ20. Since σ10, σ11 or σ20 may not in general be
zero for a particular solution, we define

σ ∗= εσ10 + εδσ11 + ε2σ20 (29a)
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as the leading-order growth rate and combine the solvability conditions at orders ε,
εδ and ε2 to obtain the following system for σ ∗:

(−σ ∗M +R∗)|Ãn|2 =
∑
l,p

[εL10(Φlp, Ψlp) + εδL11(Φlp, Ψlp) + ε2L20(Φlp, Ψlp)]

× (ÃnÃlAp〈W̃nW̃lWp〉 + ÃnAlÃp〈W̃nWlW̃p〉)
+

∑
l,m,p

ε2[F20(Φlp, Φml, Φmp) + F̃20(Φlp)(Ψml + Ψmp)]

× (ÃnÃlAmAp〈W̃nW̃lWmWp〉+ ÃnAlÃmAp〈W̃nWlW̃mWp〉
+ ÃnAlAmÃp〈W̃nWlWmW̃p〉), (29b)

where

R∗ = εR10 + εδ(R11 − G11) + ε2(R20 − G20), (29c)

Ψlp =
(al × ap) · z

a2
, (29d)

M =
R00

2(π2 + a2)
, (29e)

and the lengthy expressions for F̃20, L10, L11 and L20 are not given here but are avail-
able on request. The growth rates σ ∗ of the disturbances acting on the finite-amplitude
steady motion can then be determined from (29) following the approach due to Busse
(1967), which is now a standard stability procedure, for cases where the wavenumber
vectors of the disturbances either do or do not coincide with those of the steady
motion.

4. Results and discussion

4.1. Linear problem

The linear system and its eigenvalue problem, which led to the results (9)–(15), are, in
general, functions of the parameters C, St and T. Here and thereafter value of δ = 0.2
is chosen to evaluate Rc and other quantities whose values depend on δ. The well-
known stabilizing effect of the Coriolis force on convection (Chandrasekhar 1961)
can be seen from the expressions for Rc and ac, (12a–b), (13b) and (14). Both Rc and
ac increase with T. However, ac is independent of C and St , while Rc depends only
weakly on these two parameters. For T = 0, Rc decreases with increasing St , for a
given C, and increases with C, for a given St . Thus, the effects of increasing St and C

are, respectively, destabilizing and stabilizing at the onset of motion. These results are
understandable from the physical interpretation of the parameters St and C, since St

represents a measure of the latent heat relative to the heat content and C represents
the difference between the characteristic composition of the solid and liquid phases
and the compositional variation of the liquid. However, in the rotating case (T �= 0)
there is a competition between the stabilizing effects of C and T, which depends
on the values of St and T. Since the dependence of Rc on C and St is through the
expression for R01c given in (13b), we find that for 0 <St <Stc1, where

Stc1 =
T2

1 + T2 + (1 + T2)0.5
, (30)

then Rc decreases with increasing either C or St . For St > Stc1, then Rc increases with
C, while it still decreases with increasing St . Figure 1, which presents Rc versus C for



Nonlinear steady convection in rotating mushy layers 291

2

4

6

8

10

12

1 2 3 4

0.1

1.0

C

Rc

Figure 1. Rc against C for St = 0.1 and 1.0. Here T = 0.8.

T = 0.8 and for two cases St =0.1 (St < Stc1 = 0.219) and St = 1.0 (St > Stc1), illustrates
these results. It can be seen from (30) that Stc1 increases with T and reaches 1 as
T → ∞. Thus, in a small range for St bounded from above by Stc1, the only stabilizing
effect is due to T, and both C and St are destabilizing in the sense that Rc decreases
with increasing either C or St . To see the main cause for the destabilizing effect
of C when St is bounded from above by Stc1, we consider the expression (13b) for
R01c and note that the first term inside the bracket on the right-hand side, which is
independent of St , is due to the interaction between the leading term in the basic state
of the local solid fraction and the Coriolis term in the momentum–Darcy equation.
This interaction term is associated with the basic-state solid fraction because of the
difference between the local fluid velocity and the local volume flux of interdendritic
fluid, as the momentum equation is formulated in terms of the Darcy, rather than the
local, velocity. If this interaction term is not taken into account, then C cannot exhibit
the above-described destabilizing effect. We will uncover more surprising results due
to the interactions of the local solid fraction with the Coriolis term later in this
section.
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Due to degeneracy of the linear system, these linear results are applicable to both
two- and three-dimensional convection cases, the nonlinear results for which are
presented and discussed in the next subsection.

4.2. Nonlinear problem

Important quantities due to the nonlinear effects are the coefficients

R1 = R10 + δR11 +O(δ2) (31)

and R20, which are calculated in the present study. As can be seen from the expansions
(8), these coefficients represent leading contributions to the change in R required to
obtain finite amplitude ε for a nonlinear solution. In terms of these coefficients the
amplitude of convection is of order

|ε| =
|R1| ±

[
R2

1 + 4R20(R − Rc)
]0.5

2R20

. (32)

There are two expressions for |ε| corresponding to the plus and minus signs in (32):
the plus sign corresponds to the case of maximum |ε| where R20 is positive, while the
negative sign corresponds to the case of maximum |ε| where R20 is negative. It should
also be noted that for non-zero R1, which can correspond to convection in the form of
hexagons, then the expression (32) for |ε| is provided only for the subcritical convection
state where R < Rc, since it is preferred over the supercritical convection in the sense
that it generally corresponds to the smallest value of R. In this case the amplitude
of convection is largest when the magnitude of R1 is largest. For R1 = 0, which can
correspond to two-dimensional rolls, rectangles and square pattern convection, then
the sign of R20 determines whether the steady solution exists for values of R above
or below Rc. For R1 = 0 and supercritical convection, where R > Rc, the amplitude of
convection is largest, provided the value of R20 is smallest among all the solutions
to the nonlinear problem. In the present problem the coefficients R1 and R20 are
due to the linear and nonlinear interactions between the local solid fraction and the
Coriolis term in the momentum–Darcy equation, the nonlinear convective terms in
the temperature equation and the nonlinear interactions between the flow velocity
and the non-uniform and nonlinear permeability associated with the perturbation to
the basic-state solid fraction.

Hexagonal convection

The coefficient R1, given by (24a–b) and (31), for the hexagonal convection was
computed for various values of T, C, St , Kc and K2. It was found that depending
on the values of the parameters, R1 can be either positive or negative, and, thus, the
steady hexagonal convection can be supercitical for

εR1 > 0 (33a)

and subcritical for

εR1 < 0. (33b)

For the supercritical case, up-hexagons correspond to the region in the (R1, ε)-plane
where R1 > 0 and ε > 0, while down-hexagons correspond to the region where R1 < 0
and ε < 0. For the subcritical case, up-hexagons correspond to the region in the (R1,
ε)-plane where R1 < 0 and ε > 0, while down-hexagons correspond to the region where
R1 > 0 and ε < 0.

Some typical results on the effects of T and Kc are presented in figure 2 for R1

versus T for St =5.0, C = 1.0, K2 = 0, and several values of Kc. It is seen from this
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Figure 2. R1 against T for hexagons. Here St = 5.0, C = 1.0, K2 = 0 and Kc = 0, 1.0, 2.0
and 3.0. T = Tc1 is indicated by ∗ on each curve.

figure that for R1 < 0 (R1 > 0), |R1| decreases (increases) with either increasing T or
decreasing Kc.

The results provided above indicate that the value of R1 becomes more positive
as T increases or Kc decreases. Hence, preference is given to the down-hexagon if
R1 > 0 because under such a situation the down-hexagon is subcritical. Conversely,
the tendency for the preference of up-hexagons decreases with increasing T and
increases with Kc. Our additional data indicated that R1 is negative for T = 0, which
agrees with the result due to Amberg & Homsy (1993), but for T �= 0, R1 increases
with T until it becomes zero at a critical Tc1 of T, beyond which R1 is positive and
generally increases rather rapidly with T. This result was one of the main reasons to
restrict the present investigation to small, at most about 1, values of T. For larger
values of T, the values of |R1| become very large, which can invalidate the basic
assumption for the expansions of type (8) for the present model. Figures 3 and 4
present the transitional boundary between the subcritical and supercritical hexagons
in the (C, T)- and (St , T)-planes for K2 = 0 and for several values of Kc, respectively.
In figure 3, St is set at fixed value of 1, while in figure 4, C is set at fixed value
of 1. The region below each graph in these figures corresponds to R1 < 0, while the
region above each graph corresponds to R1 > 0. It can be seen from these figures that
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Figure 3. Transitional boundary between subcritical and supercritical regimes for hexagons
in the (C, T)-plane for Kc = 0, 1.0, 2.0 and 3.0. Here St = 1.0 and K2 = 0.

the value of Tc1 increases with increasing C or Kc and decreases with increasing St .
In addition to the effect of the scaled linear measure of the permeability variations
Kc, our data indicated that the effect of a nonlinear measure of the permeability
variations, K2, is also to favour up-hexagons in the sense that |R1| increases with K2

when R1 < 0 and decreases with increasing K2 when R1 > 0.
Our data on variations of R1 with respect T, Kc, C and St , together with the

results presented in figure 3 indicate that for T = 0, R1 is negative, |R1| is small,
and the effect of C is stabilizing in the sense that the subcritical effect is reduced
with increasing C. For T �= 0 and above Tc1, R1, which is large for small values of
C, decreases rather rapidly with increasing C until R1 becomes zero at some critical
Cc of C. For C >Cc, R1 is negative and |R1| increases slowly with C. The value
of Cc increases with T. Hence, in the rotating case for T > Tc1, down-hexagons
are preferred over up-hexagons and the effect of C is stabilizing for C <Cc, while
up-hexagons are preferred over down-hexagons and the effect of C is destabilizing
for C >Cc. It can be seen from our extensive data and from the figure 4 that for
T =0, R1 is negative, |R1| is small, and the effect of St is destabilizing in the sense
that the subcritical effect is increased with increasing St . It turns out that for T �= 0
and below Tc1, R1 is negative for small St and |R1| decreases with increasing St until



Nonlinear steady convection in rotating mushy layers 295

0.2

0.4

0.6

0.8

1.0

0

1

2

3

1      2

T

St

3

Figure 4. Transitional boundary between subcritical and supercritical regimes for hexagons
in the (St , T)-plane for Kc = 0, 1.0, 2.0 and 3.0. Here C = 1.0 and K2 = 0.

R1 becomes zero at some critical Stc2 of St . For St > Stc2, R1 is positive and increases
with St . The value of Stc2 decreases with increasing T. For T �= 0 and above Tc1,
R1, which is now positive, increases with St . The rate of increase of R1 with respect
of St in found to increase with T. Hence, in contrast to the non-rotating case, the
tendency for the flow towards the preference of down-hexagons increases with St in
the range St < Stc2, while down-hexagons, which are preferred over up-hexagons in
the range St > Stc2, become increasingly more significant as St increases beyond Stc2.

Referring to (31), it should be noted that R10, which is entirely due to the interactions
between the local solid fraction and the Coriolis term in the momentum-Darcy
equation, is zero for T = 0 and negative for T �= 0, and |R10| increases rapidly with
T. However, R11, which is due to these interactions as well as to other nonlinear
interactions in the equations, can be either positive or negative depending on the
parameter values.

However, if the interactions between the local solid fraction and the Coriolis terms
are not taken into account, then it was found that R11 < 0 for T below some critical
value Tc2, where R1 < 0, and |R1| decreases with increasing T until R1 becomes zero
at some value of T = Tc2 and then increases with further increases in T. The value
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Figure 5. R20 against C for hexagons. Here St = 1.0, K2 = 0, and T = 0.12, 0.25 and 0.50.

of Tc2 is found to be typically about one order of magnitude larger than the corres-
ponding value for Tc1, and Tc2 is found to increase with either C or St . Some typical
values for Tc2 are 2.6 and 2.7 (Kc = 3.0, K2 = 0, St = 1.0) for C = 1.0 and 2.0, res-
pectively, and Tc2 = 2.6 and 2.8 (Kc = 3.0, K2 = 0, C =1.0) for St = 1.0 and 5.0,
respectively.

The coefficient R20, given by (24c), for hexagonal convection (N = 3, An = 1/
√

6),

designated here by R
(h)
20 , was computed for various values of T, St , C, Kc and K2. It

was found that R
(h)
20 is always positive for both rotating and non-rotating cases. For

T =0, it is independent of C, St and Kc, but it increases with K2. For T �=0, R
(h)
20 is

independent of St and Kc, increases with K2 and T, and decreases with increasing C.
Some typical results on the variation of R

(h)
20 with respect to C for T = 0.12, 0.25 and

0.50 are presented in figure 5 for K2 = 0. It is seen from this figure that the rate of
decrease of R

(h)
20 with respect to C is rather high for small C, and R

(h)
20 increases rapidly

with T. If the interactions between the local solid fraction and the Coriolis term are
not taken into account, then it was found that R

(h)
20 is still positive, independent of

C, St and Kc, and it increases with K2 and T. However, its value and its rate
of increase with respect to T are rather small if such interactions are not taken
into account. Although variations of R1 with respect to different parameters provide
information about various destabilizing and stabilizing features in the rotating case
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for hexagonal convection, as discussed in the previous two paragraphs, it should
be noted that information about R20 for hexagons is useful since R20 is the leading
second-order coefficient in the expansion for R in powers of ε, so R

(h)
20 plays a useful

role in calculating the solute flux and the order of magnitude of ε in (32) and in cases
where R1 becomes negligible or for the consideration of the stability hexagons, which
will be discussed further in the next subsection.

We also examined the vertical distribution of solid fraction at different locations
in the horizontal direction for the hexagonal convection. Our data at the centres
and the nodes of hexagons indicated that the perturbation to solid fraction at the
nodes is generally positive, while that at the centres is generally negative. This general
result holds irrespective of the parameter values considered, which indicates tendency
for chimney formation at the cell centres and not at the nodes, contrary to the
result of the experiment conducted by Tait, Jahrling & Jaupart (1992) in the absence
of rotation. However, it should be noted that neither the present type of model,
nor all the linear and weakly nonlinear models developed so far, has made any
prediction about presence of chimneys but only predicted the presence some regions
of reduced local solid fraction, whereas chimneys were actually observed to form at
the nodes of the hexagons in the experiments (Tait et al. 1992). The reason for this
apparent inconsistency about the locations for the tendency for chimney formation
is not known at present, but it could be due to factors such as the intrinsic time-
dependent nature of the experiments or due to assumptions in the theory such as the
near-eutectic approximation, the large-far-field temperature limit and the prescribed
constrained growth at constant solidification rate. In addition, our results indicate
that the rotational effect may be beneficial since the perturbation to the solid fraction
at any node in the rotating system is found to be greater at any vertical level than in
the absence of rotation. Some typical results are presented in figure 6 for the vertical
distribution of the basic state and total solid fraction at the centre of a hexagon for
T = 0 and 0.5. In these calculations δ = 0.2, St = C = 1.0, Kc = K2 = 0, and the value
ε = 0.002 is chosen, which is the maximum value of ε beyond which the solid fraction
becomes negative. This is based on the physical grounds that the deviation of the
total solid fraction φ̃ from φB cannot be such that φ̃ becomes negative. We have
chosen zero values for Kc and K2 in these calculations since φ̃ is found to be much
less sensitive to Kc and K2 at such small value of ε. It is seen from this figure that
the solid fraction in the rotating case is notably smaller than that in the absence of
rotation, except close to the upper boundary and, hence, the tendency for chimney
formation at the cell centres increases in the presence of rotation. The results also
indicate that the tendency for chimney formation is higher near the lower boundary
than anywhere else in the layer.

Square pattern convection

We now present and discuss the results for another three-dimensional case of
convection, in the form of square cells, which, as is discussed later, could become
preferred in the present problem for T in a particular range of values. First, refer
back to figure 6, which provides graphs for the total solid fraction at the centre
of a square cell in square pattern convection. The parameters are as in the case of
hexagons. Again, the tendency for chimney formation increases in the presence of
rotation and such tendency is stronger near the lower boundary. It is also seen from
this figure that the tendency for chimney formation at the squares-cell centres is
apparently higher than that at the hexagons-cell centres. Our additional data at the
boundary points between two square cells indicated that the perturbation to the solid
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Figure 6. Solid fraction for hexagons and squares versus z for St = 1.0, C = 1.0, Kc = 0,
K2 = 0 and x = y = 0. The upper graph presents φB , while the other graphs present φ̃ for
hexagons (h) and squares (s) at T = 0 and 0.50.

fraction is negative and the tendency for chimney formation is higher in the presence
of rotation.

As was explained in the previous section, R1 is zero for the case where convection
is in the form of square cells, and thus we next present and discuss the results for the
coefficient R20, given by (24c), for square cells (N =2, An = 1/2), which is designated
here by R

(s)
20 . This coefficient was computed for various values of T, St , C, Kc and

K2. It was found that, depending on the value of T, R
(s)
20 can be positive or negative

and thus both supercitical and subcritical squares are possible. Also, R
(s)
20 <R

(h)
20 for

both rotating and non-rotating cases. For T =0, R
(s)
20 is positive and independent

of C, St and Kc, but it increases with K2, which is consistent with the stabilizing
effect of decreasing the permeability. For T �= 0, R

(s)
20 is independent of St and Kc,

increases with K2, increases initially with T, and decreases with increasing C. Thus,
the rotational constraint changes the role of C in the nonlinear regime for squares.
As in the case of R

(h)
20 , it was found that the rate of decrease of R

(s)
20 with respect to C

is high for small C, and R
(s)
20 increases rapidly with T. The square pattern convection

is supercritical for sufficiently small values of T. If the interactions between the local
solid fraction and the Coriolis term are not taken into account, then the qualitative
features of R

(s)
20 are similar to those of R

(h)
20 described before.
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Figure 7. Transition boundary between subcritical and supercritical regimes for squares (s)
and rectangles (re) with γ = 78.5 and 66.5 in the (C, T)-plane. Here K2 = 0.

We also obtained some results on the variation of R
(s)
20 with T for different values

of C. It was found from our calculated data that R
(s)
20 is positive for sufficiently small

T and increases with T until reaching a maximum value at some critical T = Tc3.
For T > Tc3, R

(s)
20 decreases with increasing T until R

(s)
20 becomes zero at some critical

T = Tc4. For T > Tc4, squares are subcritical. The critical values for Tc3 and Tc4

are found to increase with C but are independent of Kc and St . Some typical values
of Tc3 are 0.51 and 0.51 (K2 = 0) for C = 1.0 and 2.0, respectively. Typical results
for Tc4 are presented in figure 7, which provides the transition boundary between
subcritical and supercritical regimes for squares and for two different rectangles in the
(C, T)-plane for a fixed value of K2 = 0. Square pattern convection is supercritical
in the region below the curve for squares (s) shown in figure 7, and subcritical in
the region above the curve. In the subcritical regime, R

(s)
20 increases with C. These

qualitative features of squares are found to be entirely due to the interactions between
the local solid fraction and the Coriolis term.

Rectangular pattern convection

The simplest semi-regular solutions in the form of different types of rectangular
patterns are found to become preferred in the present problem for T above Tc5.
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Like to the case of squares, R1 is zero for rectangles. For T just above the smallest
value of Tc5, which is very slightly above zero, rectangles with angle γ of about
60◦ are supercritical and their R20 value, which is designated for a general rectangle
by R

(re)
20 , is smaller than the corresponding values for rolls and rectangles with γ

larger than 60◦, which includes squares. The critical Tc5 is independent of Kc and
St , and a typical value of Tc5 is 0.008 at K2 = 0 and C =1.0. As is discussed later,
there is an interesting pattern transitional phenomenon in the sense that γ increases
continuously with T until it reaches 90◦ and the rectangles become squares. Each
such rectangular-cell solutions is found to have the smallest value of R

(re)
20 over some

interval in T in the domain 60◦ <γ < 90◦.
The qualitative results on the total solid fraction for the rectangles are found to be

generally similar to those for squares presented and discussed above. The coefficient
R

(re)
20 , which is independent of Kc and St , was computed for various values of T,

C, γ and K2. It was found to be positive for T below some critical value Tc6 and
negative for T above Tc6. The critical Tc6 is independent of Kc and St but increases
with γ . Some typical result on the values for Tc6 are given in the figure 7, which
includes the transition boundary between the subcritical and supercritical rectangles
for γ = 66.7◦ and 78.5◦ in the (C, T)-plane. The rectangles are supercritical in the
region below the transition curve and subcritical above it. Consistent with the results
presented in figure 7, Tc6 is found to increase with C and γ . Thus both supercritical
and subcritical rectangles can exist in particular range of values of T. As in the case
of squares, it was found that R

(re)
20 <R

(h)
20 . Qualitative variations of R

(re)
20 with C and

K2 are found to be similar to those for squares. Some typical results on the variations
of R20 with T and γ are shown in figure 8 for C = 1.0. It can be seen from this
figure that the effect of increasing T is very slightly stabilizing for the supercritical
rectangles at lower values of T and significantly destabilizing for higher values of
T. The effect of increasing T is generally destabilizing for subcritical rectangles. The
effect of increasing γ is stabilizing for rectangles.

Two-dimensional rolls

As explained in the previous section, R1 is zero for two-dimensional rolls. Thus,
the important coefficient for rolls (N = 1, An =1/

√
2) is R20 given in (24c), which

is designated here by R
(r)
20 . This coefficient was computed for various values of T,

St , C, Kc and K2. It was found that R
(r)
20 is always positive and thus such flow is

supercritical. Also, R
(r)
20 <R

(h)
20 for both rotating and non-rotating cases. However, as

can be seen from figure 8, R
(r)
20 is smaller than R

(re)
20 for T below some critical value

Tc7, and R
(r)
20 > R

(re)
20 for T > Tc7. The value of Tc7 increases with either γ or C but

is independent of Kc and St . Some typical values of Tc7 are 0.15 and 0.35 (K =0,
C = 1.0) for γ = 64.6◦ and 78.5◦, respectively. For T = 0, R

(r)
20 is independent of C, St

and Kc, but it increases with K2. For T �=0, R(r)
20 is independent of St and Kc, increases

with K2 and T, and decreases with increasing C. Calculations on the variation of
R

(r)
20 with C for different values of T indicated that the rate of decrease of R

(r)
20 with

C is high for small C, and R
(r)
20 increases rapidly with T. If the interactions between

the local solid fraction and the Coriolis term are excluded from the present model,
then qualitatively R

(r)
20 is similar to R

(h)
20 described before.

Figure 9 presents some typical results on comparison between the variation of the
coefficient R20 with T for rolls, squares and hexagons. The results are for C = 1.0
and K2 = 0. It can be seen from this figure that rolls can be realized at a lower value
of the Rayleigh number than squares for T < Tc7, while squares can be realized at
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Figure 8. R20 against T for rolls (r), squares (s) and rectangles (re) with γ = 78.5◦ and 66.5◦.
Here St = 1.0, C = 1.0 and K2 = 0. The locations T = Tc3, Tc4, Tc6 and Tc7 are labelled
3, 4, 6 and 7, respectively.

a lower value of R for T > Tc7. In addition, supercritical hexagons are generally
realized at a value of R larger than those due to rolls and squares.

Our calculations for the vertical distribution of the solid fraction at locations
between two rolls or at the centres of rolls indicated that the perturbation to the solid
fraction at the centres of rolls can be positive, while that at locations between two
rolls is generally negative. Hence, there is a greater tendency for chimney formation
at locations between the rolls. In addition, it was found that the tendency for chimney
formation increases slightly in the presence of rotation, and is significantly higher in
a region near the lower boundary.

4.3. Stability of finite-amplitude steady solutions

Following standard stability procedures (Schluter, Lortz & Busse 1965; Busse 1967),
the system (28b) for the growth rate σ ∗ of disturbances acting on the finite-amplitude
steady solutions has been simplified, and the expression for σ ∗ has been computed
for different integers N and various values of Φnm (|Φnm| � 1) and Ψnm (|Ψnm| � 1).
In all the cases that have been investigated only steady supercritical solutions in the
form of rolls, rectangles and squares, and subcritical steady solutions in the form of
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Figure 9. R20 against T for rolls (r), squares (s) and hexagons (h). Here St = 1.0, C = 1.0
and K2 = 0.

down-hexagons and up-hexagons are found to be possibly stable in particular range
of values for the non-dimensional parameters and for ε. The results are briefly as
follows. Supercritical rolls are stable only if

|ε| � ε1, ε1 =

√
3|R1|
R

(r)
20

, 0 <R
(r)
20 � R

(s)
20 , 0 <R

(r)
20 � R

(re)
20 . (34a)

Supercritical squares are stable only if

|ε| � ε2, ε2 =

√
3|R1|

√
2
(
R

(r)
20 − R

(s)
20

) , R
(r)
20 >R

(s)
20 > 0, R

(re)
20 � R

(s)
20 > 0. (34b)

Supercritical rectangles are stable only if

|ε| � ε3, ε3 =

√
3|R1|

√
2
(
R

(r)
20 − R

(re)
20

) , R
(r)
20 >R

(re)
20 > 0, R

(s)
20 � R

(re)
20 > 0. (34c)

Subcritical down-hexagons are stable only if

ε4 � |ε| � ε5, ε4 =
|R1|
R

(h)
20

, ε5 =
6|R1|

R
(h)
20 − R

(r)
20

, R1 > 0. (34d)
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Figure 10. Bifurcation diagram in the (R, ε)-plane. Solid and dotted lines represent,
respectively, stable and unstable branches. The lines h and nh represent, respectively, hexagons
and non-hexagons.

Subcritical up-hexagons are stable only if

ε4 � |ε| � ε5, R1 < 0. (34e)

Figure 10 provides a qualitative bifurcation diagram representing the amplitude
ε versus R for those solutions that are possibly stable in particular range of ε

according to (34). Solid lines correspond to linearly stable branches while dotted lines
correspond to linearly unstable branches. Note that this diagram does not include a
three-dimensional solution that is always unstable. This bifurcation diagram shows
different cases for possibly stable solutions. For T < Tc7, the two-dimensional roll
branch bifurcates supercritically and is initially unstable to a subcritically bifurcating
hexagonal branch. The hexagonal branch either is due to up-hexagons if ε is positively
upward in the diagram or is due to down-hexagons if ε is positively downward. For
Tc7 < T < Tc4, the square branch bifurcates supercritically and is initially unstable
to a subcritically bifurcating hexagonal branch. For Tc5 < T < Tc6, the rectangular
branch bifurcates supercritically and is initially unstable to subcritically bifurcating
hexagonal branch.

To illustrate (34) and to provide specific stable flow patterns for different values
of T, we use (25) and (34) to present briefly the following three examples, for
which Kc = K2 = 0 and St = C =1.0. The first example is T = 0.12 where (34a) and
(34e) are applicable. For 0.006 � |ε| � 0.115, up-hexagons are stable, while rolls are
stable for |ε| � 0.014. There is an overlap region 0.014 � |ε| � 0.115 for which both
up-hexagons and rolls are stable and hysteretic effect can occur, where the solution
realized can depend on the initial condition. The second example is T = 0.20 where
(34c) and (34d) are applicable. For 0.009 � |ε| � 0.179, down-hexagons are stable,
while rectangles at about γ = 63◦ are stable for |ε| � 0.020. There is an overlap region
0.020 � |ε| � 0.179 for which both down-hexagons and such rectangles are stable. The
last example is T = 0.80 where (34b) and (34d) are applicable. For 0.077 � |ε| � 0.923,
down-hexagons are stable, while squares are stable for |ε| � 0.192. There is an overlap
region 0.192 � |ε| � 0.923 for which both down-hexagons and squares are stable.
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5. Conclusion and some remarks
We have investigated the problem of nonlinear steady convection in a rotating

mushy layer during alloy solidification, and analysed the two- and three-dimensional
steady modes using the model due to Amberg & Homsy (1993). We performed
a weakly nonlinear analysis by taking into account all the linear and nonlinear
interaction terms, including those between the local solid fraction and the flow
associated with the Coriolis term, in the governing equations to determine the steady
solutions admitted by the nonlinear problem, and employed stability analysis to
determine the solutions that can be stable with respect to arbitrary three-dimensional
disturbances in different ranges of the parameter values and the amplitude of motion
ε. We found that, depending on the range of values of the parameters and ε, two-
dimensional oblique rolls and distorted three-dimensional solutions in the form of
squares, rectangles, down-hexagons and up-hexagons are possibly stable. We found
that two-dimensional rolls are supercritical and stable only if ε is equal to or above
some value ε1 and T is below some values Tc5 and Tc7 or above some values Tc4 and
Tc6. Three-dimensional squares (rectangles) are stable only if they are supercritical,
ε is equal to or above some value ε2 (ε3) and T lies in the range Tc7 < T < Tc4

(Tc5 < T < Tc6). Subcritical squares and subcritical rectangles also can exist but
they are unstable. Subcritical down-hexagons are stable only if ε lies in the range
ε4 � ε � ε5 and R1 > 0. Subcritical up-hexagons are stable only if ε lies in the range
ε4 � ε � ε5 and R1 < 0. Supercritical down-hexagons and supercritical up-hexagons
also can exist but they are unstable. There are certain overlap regions in ε where
more than one solution can be stable and, thus, there can be a hysteretic effect in
such overlap regions. The results of our studies on the onset of plume convection
and chimney formation within the mushy layer indicated that they are most likely
to be initiated near the lower boundary of the layer. The presence of rotation was
found to reduce the tendency for chimney formation at the centres of rolls and at
the nodes on the boundaries of hexagons. The stability of supercritical rectangles
and squares uncovered in the present study was found to be entirely due to the
interactions between the local solid fraction and the Coriolis term in the momentum-
Darcy equation, and such interactions were also found to enhance significantly the
stability of the subcritical down-hexagons.

As mentioned in § 1, Guba (2001) studied the problem of finite-amplitude steady
convection in a rotating mushy layer without taking into account interactions between
the local solid fraction and the Coriolis term. Guba carried out a weakly nonlinear
analysis of two-dimensional oblique rolls and distorted hexagons, by calculating only
the leading non-zero coefficient beyond Rc in the expansion for R for each solution,
but made no stability analysis of these finite-amplitude solutions. Similarly to Amberg
& Homsy (1993), Guba (2001) studied the case where the permeability coefficient K1

can be in general an order-one quantity and predicted, like Amberg & Homsy (2001),
that depending on the range of the parameter values, either subcritical or supercritical
rolls can exist, and subcritical hexagons can change their form from up-hexagons to
down-hexagons for T beyond some critical value. It should, however, be noted that
one can show that such subcritical rolls as well as the hexagonal solutions found
by Guba are unstable. Also, as was shown in the present study, the supercritical
rolls found by Guba cannot be realizable over certain range of values of T if the
interaction terms between the local solid fraction and the Coriolis term are taken into
account. Guba’s results were reported for T as large as 7. However, as was found in
the present study, if the interaction between the local solid fraction and the Coriolis
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term is taken into account, then the validity of the results for T > 1 is questionable
since |R1| and |R20| can become much larger than unity, by about 2 to 3 orders of
magnitude, for T just above unity, so that expansions of the type (8), which assumes
that the coefficients, such as |R1| and |R20|, in those double-expansions in powers of
ε and δ be of order unity, can no longer be justified.

As already noted, we were interested in carrying out a significant extension of
the work by Guba (2001) by fully including the interaction between the local solid
fraction and the Coriolis term, carrying out a weakly nonlinear analysis to determine
all the two- and three-dimensional steady solutions admitted by the nonlinear system
and performing stability analyses of the finite-amplitude solutions to determine all the
possible stable solutions. During our extensive investigation, we were able to uncover
significant new results and new flow features that can increase our understanding of
the effects of the external constraint of rotation on the flow in mushy layers, which
hopefully could aid future studies in the area. When comparing the present results
to some experimental results, it should be noted that all the available experimental
results, which are due to Sample & Hellawell (1982, 1984) and Claben, Heimpel &
Christensen (1999), have been for fully nonlinear convection with fully developed
chimneys, and thus are not applicable to the present results for weakly nonlinear
convection near the onset of motion. It is hoped that some experimental studies of
the present problem could be carried out in the near future for a comparison with
the present qualitative results. As was shown by Guba (2001), the case T � 1 can be
quite accessible in the laboratory for an ammonium chloride–water system since it
yields a value of the rotation rate about ω � 2.0 rad s−1.
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